
Modelling and Formal Verification of
Timing Aspects in Large PLC Programs

Borja Fernández Adiego ∗ Dániel Darvas ∗

Enrique Blanco Viñuela ∗ Jean-Charles Tournier ∗

Vı́ctor M. González Suárez ∗∗ Jan Olaf Blech ∗∗∗

∗ CERN, European Organization for Nuclear Research, CH-1211
Geneva 23, Switzerland (e-mail: {borja.fernandez.adiego,

daniel.darvas, enrique.blanco, jean-charles.tournier}@cern.ch).
∗∗ ISA, University of Oviedo, Campus de Viesques 33204 - Gijón,

Spain (e-mail: victor@isa.uniovi.es)
∗∗∗ RMIT University, Melbourne, Australia (e-mail:

janolaf.blech@rmit.edu.au)

Abstract: One of the main obstacle that prevents model checking from being widely used in
industrial control systems is the complexity of building formal models out of PLC programs,
especially when timing aspects need to be integrated. This paper brings an answer to this
obstacle by proposing a methodology to model and verify timing aspects of PLC programs.
Two approaches are proposed to allow the users to balance the trade-off between the complexity
of the model, i.e. its number of states, and the set of specifications possible to be verified. A
tool supporting the methodology which allows to produce models for different model checkers
directly from PLC programs has been developed. Verification of timing aspects for real-life PLC
programs are presented in this paper using NuSMV.

Keywords: PLC, timers, formal verification, model checking, automata, abstraction

1. INTRODUCTION

CERN, the European Organization for Nuclear Research,
relies on a large number of PLC (Programmable Logic
Controller) applications to operate its different particle
accelerators. These applications are critical to CERN
operation, thus guaranteeing that their behaviour conform
to their specifications is of highest importance. Formal
verification, and especially model checking, appears to
be a promising technique to ensure that PLC programs
meet their initial specifications. However, this technique
is not widely used in industry due to the complexity of
building the formal model of a PLC program: building
such formal model requires an in-depth knowledge of the
system to model (hardware and software) as well as the
underlying model checker. Moreover, when timing aspect
needs to be taken into account, i.e. PLC time and timers,
the modelization task becomes even more complex as the
resulting models, without a refined representation, are
usually too large in terms of state space to be handled
by model checkers.

In this paper, we are proposing a methodology to model
PLC time and timers. The methodology is integrated into
the generic framework described in Darvas et al. (2013)
allowing to generate formal models automatically out of
PLC programs. Two approaches are proposed in order
to take timing aspects into consideration: realistic and
abstract modelization. The realistic approach represents
the behaviour of timers and the internal representation
of time in PLCs with high fidelity. Such modelling allows
to verify time-related properties to ensure that a given

action will (or will not) be performed after or before a
given delay (e.g. PLC output set to true 500 ms after a
given input has been set to true). While this modelization
is powerful in terms of expressivity, it may produce models
that are too big to be handled by model checkers and
thus, leads to the second modelling approach. The abstract
approach omits the modelization of time itself and gives a
non-deterministic model of timers. Compared to the first
approach, this one drastically reduces the state space of
the generated model and therefore allows to verify large
PLC programs while still providing the ability to verify
some time-related specifications. The properties that can
be verified by applying this second modelization are for
example liveness properties (e.g. PLC output will be set
to true after its input is set to false). The requirements
verified using the abstract time modelization remain valid
on the realistic model, as the realistic approach is a re-
finement of the abstract one. Finally, a tool implementing
the two types of time modelization and generating formal
models for NuSMV (Cimatti et al. (2002)), BIP (Basu
et al. (2011)) and UPPAAL (Amnell et al. (2001)) has
been developed and applied to CERN’s control systems.

1.1 Related Work

Although modelling timing behaviour of PLC programs
has previously been studied in the literature, none of them
provides a general methodology which allows automati-
cally generating formal models including timing aspects,
and performing verification on these models at the same
time. Moreover, all approaches found in the literature are

NOTICE: this is the author’s version of a work that was accepted for publication on The 19th World Congress of the International Federation of Automatic Control.
Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be
reflected in this document. Changes may have been made to this work since it was submitted for publication.
A definitive version was subsequently published in E. Boje and X. Xia (Eds.): Proceedings of the 19th IFAC World Congress, 2014, pp. 3333-3339, 2014. DOI:
10.3182/20140824-6-ZA-1003.01279

http://dx.doi.org/10.3182/20140824-6-ZA-1003.01279

bounded to a specific model checker and thus prevent to
take advantages of the different types of model checkers.

Indeed, Mader and Wupper (1999) or Perin and Faure
(2013) proposes an approach for modelling PLC timers
using timed automaton models, but does not present ver-
ification results. As time is considered as a linear and
monotonic function, the generated models would have a
huge state space, making verification impossible if this
approach would be applied to large systems, as the systems
developed at CERN. Similarly, Mokadem et al. (2010)
presents a case study where a global model for a timed
multitask PLC program is created for verification pur-
poses. This approach is similar to the one proposed by
Mader and Wupper (1999) but verification is performed
with UPPAAL using clocks and therefore with monotonic
time representation. In Wang et al. (2013), several aspects
of PLC control systems including timers are modelled,
using the component-based BIP framework. In this case,
they assume fixed PLC cycle length which is a big con-
strain, and timer models are not precise enough compare
to real PLC timers. In addition, verification results are not
presented.

The rest of the paper is structured as follows: Section 2
introduces the notion of time and timers in PLCs. Sec-
tion 3 gives an overview of the proposed methodology
which allows to generate formal models for various model
checkers out of PLC programs. Section 4 presents in detail
the two proposed ways to model timing aspects of PLC
programs, along with a case study applying the mod-
elization. In addition, this section demonstrates formally
that a realistic time modelization is a refinement of its
abstraction. Finally, Section 5 analyses the two approaches
by highlighting their advantages and disadvantages, and
concludes the paper.

2. TIMED PLC CONTROL SYSTEMS

This section gives an overview of PLC control systems,
with a focus on timing aspects. In addition, a case study
is presented which will be used throughout the remaining
sections to illustrate the modelization approach proposed
in this paper.

2.1 Timing behaviour of PLCs

A PLC is an industrial computer which performs a syn-
chronous and cyclic process called scan cycle, consisting of
the following main steps: (1) reading the input values to
the memory, (2) interpreting and executing the program
logic using the read data, and finally (3) writing the
computed output values to the real outputs.

In standard PLCs, i.e. non-safety PLCs, the cycle time
is not fixed, but there is an upper limit enforced by a
watchdog module. If the PLC cycle time is bigger than
this upper limit, e.g. due to an infinite loop in the PLC
program, the PLC executes a special part of the program
responsible for handling timing errors. By contrast, safety
PLCs have a fixed cycle time.

Timing operations, such as timers, are defined by IEC
61131 and can be considered as a function block that
delays a signal or produces a pulse. Different types of

timers can be found in PLCs, one of the most common
timers is TON (Timer On-delay) (see Fig. 1). This timer
has 2 inputs variables: IN and PT. IN is a Boolean input
signal and PT is the delay time. The timer has 2 outputs:
Q and ET. Q is the Boolean output variable, its value will
be true after the predefined delay (PT) when IN performs
a rising edge, and it will be false if IN is false. ET is the
elapsed time, its value is increased until PT, starting when
a rising edge occurred on IN.

Q
output

PT

0

1

0

1

t

0

PT

IN
input

ET
elapsed

time

Fig. 1. TON time diagram

PLC timers use a specific data type for timing operations
called TIME. This data type is defined by IEC 61131 as
a finite variable which states that “The range of values
and precision of representation in these data types is
implementation-dependent”. Representing time by a finite
variable leads to a non-monotonic time representation as
the variable can overflow (c.f. the upper part of Fig. 3).
For example, in Siemens S7 PLCs, the TIME data type is
defined as a signed 32-bit integer with the same precision
of 1 ms (see Siemens (1998)), having an upper limit of
approximately +24 days and a lower limit of −24 days.
However, in Schneider and Beckhoff PLCs, the TIME data
type is an unsigned 32-bit integer with a precision of 1 ms.
In this paper, we consider the signed time interpretation
as defined in Siemens PLCs.

2.2 Case study

In the context of this paper, the industrial control sys-
tem framework, developed and used by CERN, called
UNICOS (Blanco et al. (2011)) is taken as a case study.
UNICOS provides a library of base objects representing
common industrial control instrumentation (e.g. sensor,
actuators, subsystems). These objects are represented as
function blocks in the PLC code, using the ST (Structured
Text) language, which can call different functions, function
blocks on the PLC. Currently UNICOS is implemented for
standard PLCs, i.e. in which the cycle time is not fixed and
depends on the overall application.

In this paper, we focus on the OnOff object provided by
the UNICOS library for Siemens PLCs. This object is used
to represent a physical equipment, as actuators driven
by digital signals (e.g. valves, heaters, motors). With 60
input variables (of which 13 are parameters), 62 output
variables, 600 lines of ST code, and 3 timer instances, the
OnOff object is representative of other UNICOS objects
in terms of size and complexity.

3. MODELLING PLC PROGRAMS

This section gives a brief overview of the general method-
ology for modelling PLC programs without considering
timing aspects. For more details, readers should refer to
Darvas et al. (2013). Also, the applied reductions and
abstractions are introduced.

3.1 Methodology

This methodology aims to generate formal models out of
ST code. It provides an intermediate model and a set
of transformation rules to produce the input models for
different verification tools from the “non-formal world” of
control systems (see Fig. 2). This “non-formal world” is
basically composed by the ST program and environmental
factors related to the execution platform (for example the
PLC scan cycle).

ST code
IF c THEN
 s1;
ELSE
 s2;
...

intermediate model

t2
[NOTwc][c]

s
t1

s1 s2PLC environment

–wcyclicwbehaviour
–wconstantwinputs

duringwthewcycle
–w...

Non-formalwworld Intermediatewmodel Formalwmodels Verification

NuSMV model

next(loc) := case
 loc = s & c: s1;
 loc = s & !c: s2;
...

BIP model

UPPAAL model

...

Model checking

Simulation

reductions
abstractions /

Fig. 2. Overview of generic methodology producing formal
models out of ST code.

This intermediate model based on automata simplifies
the transformation rules to any formal model used by a
model checker, whose modelling language is close to an
automata-based formalism. It allows to easily add new
model checkers to the methodology and verify the same
model with different verification tools, thus benefiting from
the different advantages of the verification tools in terms
of verification performance, simulation and expressiveness
of properties specification.

Our automata-based formalism is strong enough to model
all relevant features of a PLC control system. The seman-
tics of the intermediate model is similar to the network
of timed automata formalism defined in Behrmann et al.
(2004) but without explicit logical clock representation. In
addition, an automatic generation tool has been developed
supporting this methodology, which allows to generate
models for NuSMV, UPPAAL and BIP out of ST code.

3.2 Reduction and abstraction techniques

Modelling PLC programs for verification purposes implies
the creation of models with huge state spaces, as it
happens for any other real-life software. If these are
timed systems, then modelling of time is required, so the
problem becomes even bigger. Although the main goal of
this paper is not to present the abstraction techniques
applied on the generated models in details, we introduce
them as they are needed to understand our experimental
results on timed PLC programs. These techniques are
included in the methodology and applied automatically
to the intermediate model, therefore all the generated
final models benefit from them. The main abstraction and
reduction techniques applied:

• General rule-based reductions are used to simplify
the generated automata by taking advantage of the
characteristics of the PLC’s execution model. For ex-
ample, variable assignments on succeeding transitions
can be merged if they are not affecting each other, as
the value of the variables are not checked during the
execution of the PLC cycle but only at the end. More
than 20 rules have been defined to simplify and reduce
the model.

• When the property to verify is provided, we apply the
Cone of Influence (COI) reduction (c.f. Clarke et al.
(1999)), which consists in removing all variables that
do not affect the property. As it is depending on the
requirement to be checked, its impact on the size of
the state space highly varies, but for many examples,
we can observe a large state space reduction.

• In some cases, predicate abstraction can be also ap-
plied to PLC applications. It consists in substituting
non-Boolean variables by Boolean-valued functions.

The reader find detailed information about the applied
techniques in Darvas et al. (2014).

4. MODELLING TIMING ASPECTS OF PLC
PROGRAMS

This section focuses on the modelling aspects of PLC
time and timers extending the described methodology
in Section 3. The TON timer, presented in Section 2,
is used to illustrate the two proposed approaches to
model timing aspects, but the same methodology can be
applied to any other PLC timer block. In the proposed
methodology extension, a PLC timer is represented by a
separated automaton which is synchronized with the main
program. Modelling PLC timers also implies to model the
TIME data type. However, as mentioned previously, timed
models usually contain a huge state space, which cannot
be handled by model checkers. Based on this observation,
two different approaches are proposed in this section. The
first is a realistic timer representation, which is close to the
reality, enabling precise modelling and verification. The
second approach proposes an abstract time representation,
which is less accurate, but drastically reduces the state
space of the model.

Both approaches are analyzed hereafter paying attention
to time and timer representation, property specification,
and experimental results. In addition, we are presenting
the proof that the abstract approach simulates the realistic
one, thus guaranteeing that any property verified by the
abstract approach also holds in the realistic one, even if is
much simpler.

4.1 Realistic approach

This first approach presents a realistic model of a TON
timer and the time handling. This approach allows to
specify properties with explicit time in it. Having this
realistic representation of the timer implies that time
needs also to be modelled realistically.

Time representation Three main characteristics are con-
sidered to model time for this approach:

(1) Time is modelled as a finite variable: it represents
with high fidelity the TIME data type in a PLC. However,
instead of having a signed 32-bits integer variable (like
in Siemens PLCs), a 16-bits variable is used to represent
this data type. This range reduction is possible as the
behaviour of a PLC is cyclic and the cycle time, the delays
of the timers, and the delays in the requirements are much
smaller than the range of this 16 bit variable. The accuracy
of this variable is 1 ms, as it is in real PLCs. Because of this
time representation, overflow of time has to be considered
when the timer is modelled, also when the requirement
to be checked is expressed (e.g., the current time can be
smaller for a later event, see Fig. 3).

(2) Time is incremented by adding the cycle time:
In this representation, time is not incremented by indi-
vidual units of time. It is instead incremented by the
duration of the last PLC cycle at the end of it. This
assumption obviously simplifies the global model and there
is not any loss of accuracy when comparing with the real
implementation in a PLC, considering that the timers are
called at most once in each PLC cycle, which holds for our
real cases.

(3) Cycle time is chosen non-deterministically: in
order to represent standard PLC with a varying cycle time,
a random value is generated at the end of each cycle to
represent this. The selected random values are between 5
ms and 100 ms, which is a valid assumption based on the
PLC systems at CERN.

cu
rr

e
nt

 ti
m

e
(c

tim
e)

t

max.
TIME

min.
TIME

0
tm

tm

start time < stop time

Fig. 3. Consequences of finite time representation

Timer representation Given this finite time represen-
tation, the behaviour of the timer is represented as it is
shown on the ST code (see Fig. 4). In this code, the input
variables are IN and PT, and the output variables are
Q and ET. The variable ctime represents the current time
and it is modelled as previously explained. In addition, two
variables are added: running and start, where running is
a Boolean variable representing when the timer is working
after a rising edge on IN and start contains the value of
ctime when IN has a rising edge.

By applying the extended methodology, the corresponding
automaton of the TON ST code was produced and the
equivalent state machine is shown in Fig. 5. (Note that
the assignments of ET are omitted from the state machine
to simplify the figure.) This state machine contains 3
states corresponding to the 3 original states of the TON:
NR (not running; running=false, Q=false), R (running;
running=true, Q=false) and TO (timeout; running=true,
Q=true). The transitions in the state machine (labelled as
t1, t2, t3, t4) correspond to the conditional statements in
the ST code.

IF in = false THEN

Q := false; ET := 0;

running := false; // t1

ELSIF running = false THEN

start := CTIME;

running := true; // t2

ELSIF CTIME - (start + PT) >= 0 THEN

Q := true; ET := PT; // t3

ELSE

IF not Q THEN ET := CTIME - start; END_IF; // t4

END_IF;

Fig. 4. ST code of TON

Only one transition can happen in this state machine for
every call of the timer. Therefore the timer cannot go from
state NR to state TO with one function call, which is
valid if we assume that delays are always greater than zero
(PT > 0). According to the specification of the Siemens
TON implementation (Siemens (1998)), the parameter PT
should be positive.

The potential state space (PSS) size of this timer repre-
sentation is 3.38 · 1016 and its reachable state space (RSS)
is 5.91 · 1015 without counting the variable ctime (as it is
a global variable used by all the timers).

[¬in] [¬in]

[in ∧ P]

[in]

[in ∧ ¬P] [in ∧ P]

/ start:=CTIME

running=false
Q=false

running=true
Q=true

running=true
Q=false

[in ∧ ¬P]

P ≡ (CTIME− (start + PT) ≥ 0)

[¬in] NR

R TO

t2

t1

t1
t1

t3

t3

t4

t4

Fig. 5. State machine of the realistic TON representation

Property specification Using the methodology and the
developed tool, input models for NuSMV are automati-
cally generated. The experimental results presented here
are produced using this model checker. NuSMV provides
CTL (Computational Tree Logic) and LTL (Linear Tem-
poral Logic) for property specification. Our goal is to verify
properties with explicit time in it, like “if C1 is true, after
tm time C2 will be true, if C1 remained true” (where C1 and
C2 are Boolean expressions, C1 contains input variables and
parameters and C2 contains output variables).

CTL and LTL do not provide this expressiveness, for this
reason a monitor or observer automata is added to the
model. The goal of the monitor is to check C1, and if it is
true for at least tm time, the monitor output value Mout
is set to true. By using such monitor, the requirement is
simplified as “if Mout is true, then C2 should be true”. This
requirement can be formalized easily in CTL: AG(Mout→
C2). An example for this monitor usage can be seen on
Fig. 6. As the computed values are assigned to the real
outputs of the PLC only at the end of the PLC cycle, the
requirements should be checked only at this point. The
general CTL expression extended with it is the following:
AG(PLC END→ (Mout→ C2)), where PLC END is true,
iff the execution is at the end of a PLC scan cycle.

The behaviour of this monitor is similar to the TON timer,
but it is independent of the rest of the program logic,
therefore Mout will be true after tm time, if C1 is true and
it can be used to verify if outn holds the property. It has
to be noticed, that it is not enough to save a “timestamp”
tC1 when C1 is true, and formalize the requirement as
AG((ctime ≥ tC1 + tm)→ C2), because the ctime variable
is a finite integer, thus it can overflow, as it is illustrated
by Fig. 3.

OnOff

in
p

u
ts

outputs

monitor
enabled

delay

compare

if Mout is true,
outn should
be true also

Mout

10 s (tp)fi
x
e

d

p
a

ra
m

e
te

rs

false
in1

in2

inn

par1

...

...

out1

outn
TON

lo
gi

c

IN

QPT

lo
gi

c

10 s (tm)

Fig. 6. Verification configuration for OnOff model ex-
tended with monitor

Experimental results This approach has been applied to
the UNICOS framework. In particular, the experiments
showed here have been applied to the OnOff object from
the UNICOS library. Table 1 presents different state spaces
depending on which abstraction and reductions techniques
are applied. On the OnOff model, we made our exper-
iments with a requirement of the previously introduced
structure: “if C1 is true, after tm units of time C2 will be
true, if C1 remained true”.

To be able to verify this property, the original model was
shrink from a PSS of 1.6 ·10218 states to a PSS of 1.1 ·1036

as can be seen in Table 1. In order to do so, reductions,
fixed parameters (focusing on a specific scenario), and COI
technique (which eliminated 2 timers out of 3) have been
applied. As it was mentioned before, time values were
modelled as 16-bits variables instead of 32-bits.

Table 2 presents verification results for the OnOff model
after applying all the previously mentioned reduction
techniques. We checked the introduced requirement with
three different configurations in terms of timer delay (tp)
and monitor delay (tm). The first uses tp = tm = 10 s
values, which means the parameter tp of OnOff and the
delay parameter tm of the monitor were both 10 s. In this
case, the result is true which is given by NuSMV in 11.4
s. The other two configurations use monitor delay times
smaller than the parameter tp, therefore the output is
expected too early, thus the result should be false. As it can
be seen in Table 2, in both cases the verification time was
around 5–20 s, but the generation of the counterexample
(C.ex. gen. time) took significantly more time. In the case
when we used tm = 9 s, the counterexample was longer
(3 876 steps), and its generation time was around 15 times
bigger than when we used tm = 1 s. Notice that these
verification results can have a timing error not bigger than

the maximal cycle time, 100 ms in this case, because the
current time is incremented in quanta.

Table 1. State space of the OnOff model with
realistic time representation

Time Monitor Reductions PSS #Vars

32 bit – none 1.6 · 10218 255
16 bit – none 2.5 · 10160 255
16 bit – general 1.6 · 10134 185
16 bit + general 8.5 · 10139 189
16 bit + general, COI 1.1 · 1085 143
16 bit + gen., fix params, COI 1.1 · 1036 86

Table 2. Verification time on OnOff model with
realistic time representation

Timer Monitor Run C.ex. C.ex.
delay (tp) delay (tm) Result time gen. time length

10 s 10 s true 11.4 s — —
10 s 9 s false 19.5 s 2513.2 s 3 876
2 s 1 s false 5.2 s 123.0 s 510

4.2 Abstract approach

As it was shown in the previous experimental results, the
models created by realistic approach have a big state space
even if only one TON is modelled. If this approach is
applied to larger models than the UNICOS OnOff object
probably verification would not be even possible. For that
reason, we propose a second approach based on a data
abstraction of the first approach.

Time representation In this case, time is not represented
explicitly in the model, the variable ctime representing the
current time is not maintained. Therefore properties with
explicit time cannot be validated.

Timer representation This timer representation ap-
proach consists in a non-deterministic model produced as
an abstraction of the realistic approach. The corresponding
state machine is presented in Figure 7.

Similarly to the realistic model, this model has three
possible internal state: NR (not running), R (running)
and TO (timed out). If the input IN is true, the TON
will start to run (goes to state R). After that, the TON
can stay in the state R or go to TO non-deterministically,
which means, we do not know when the timer will stop.
However, by adding a fairness constraint to the model, it
is ensured that the timer cannot stay in state R for infinite
time. In one PLC cycle only one transition can be fired,
i.e., the timer cannot go from state NR to state TO with
one call. This corresponds to the previously introduced
PT > 0 constraint. Figure 8 shows the timing diagram
of the abstract approach compared with the realistic one.
The size of the PSS and RSS for this model is 6 comprising
the Boolean input variable, reducing significantly the size
of the realistic approach but introducing some limitations
of the property specification.

This representation can result false positives, meaning that
verification tools can give spurious counterexample that
cannot occur in reality. However false negatives can never
occur, therefore if a property holds in the abstract model,
it holds in the real system.

NR

R TO

[¬in]
[¬in]

[in]

[in]

[in] [in]

[¬in]

Q=false

Q=false Q=true

<∞

Fig. 7. State machine of the abstract TON representation

PT

IN

Qrealistic

min. delay

Qabstract

0

1

0

1

0

1

t

Here the position of the rising

edge is non-deterministic.

Fig. 8. Timing diagram of TON modelled using different
approaches

Property specification Obviously, this abstract model
implies certain limitations in the specification properties.
Explicit delay times cannot be expressed in the require-
ment, but safety or liveness properties can be expressed.

Experimental results This approach has also been ap-
plied to the OnOff object from the UNICOS library. For
Experiment 1, we used the same reduction techniques and
the same fixed parameters as for the realistic approach.
The PSS of the OnOff model became 5.5 · 1024 (instead of
1.1 · 1036). Representing the requirement checked on the
realistic model is not possible in this approach as the time
is not counted explicitly. Instead, we can check the follow-
ing liveness property: “if C1 is sometime true and remains
true forever, eventually C2 will be true”. The equivalent
LTL property is: F (G(PLC END→ C1)→ F (C2)), where
PLC END represent the end of a PLC cycle. In this case,
no monitor is needed.

We made two other experiments on the model with ab-
stract time representation (Exp. 2, 3). In these cases, no
parameters were fixed and all the three timers had effect
on the requirement. The requirement 2 was a simple safety
requirement in CTL (AG(C3 → C4)), while requirement 3
was a bit more complex: AG(C5 → AF (C6)). Our exper-
iments (c.f. Table 4) showed that these requirements can
be checked using the abstract time representation, even
without fixing any parameters. With the realistic time
representation, the state space would be too large to be
verified using NuSMV.

Table 3 presents different state spaces depending on which
reductions techniques are applied and what requirement
was verified. Table 4 shows the measured run times.

Table 3. State space of the OnOff model with
abstract time representation

Reductions PSS #Vars

none 1.1 · 10131 243
general 4.7 · 10112 164
general, COI, fix params (Exp. 1) 5.5 · 1024 77
general, COI (Exp. 2, 3) 1.1 · 1040 126

Table 4. Verification time on OnOff model with
abstract time representation

Exp. #Timers Result Run time C.ex.

(1) 1 true 6.1 s —
(2) 3 false 294.2 s 18.6 s
(3) 3 false 4 201.9 s 12 020.9 s

4.3 Refinement between the two approaches

We can verify that the realistic approach indeed refines
the abstract approach. Using this proof, we are able to
guarantee that requirements verified on the abstract model
– where verification is easier – also hold on the realistic
model – where automatic verification would be harder
and more time consuming. However, the false result on
the abstract model does not imply false result on the
realistic model. Using more abstract models for verification
purposes and lifting results to realistic models is a well
known technique (Clarke et al. (1999); Loiseaux et al.
(1995)) and we apply it to the PLC domain. Specifically
to PLC timer models and we perform a proof in a similar
fashion as the refinement proofs described in Blech and
Grégoire (2011).

The proof is done by first establishing a simulation rela-
tion S between realistic (Fig. 5) and abstract automaton
(Fig. 7) that relates the states of the different automata
with each other such that only the following holds:

S(NRrealistic ,NRabstract)
S(Rrealistic , Rabstract)

S(TOrealistic ,TOabstract)

Furthermore, the simulation relation ensures that Q has
the same value in all states. In order to finish the proof,
we show that:

• The initial states are in the simulation relation:
NRrealistic and NRabstract are in the simulation re-
lation and the value of Q is the same, false.

• Each pair of realistic and abstract model state transi-
tions with a corresponding condition – regarding the
value of in – from possible states in the simulation
relation S lead to a pair of states for which S holds
again. Most cases are trivial expect: the transition of
the [in]-guarded transition in the abstract model in
the (TOrealistic ,TOabstract) state pair has two corre-
sponding transitions in the realistic model since we
do not regard the value of P in the abstract model.

Due to the fairness constraint in the abstract model, its
state cannot be Rabstract for infinite time. However, this
is also true for the corresponding NRrealistic state of the
realistic model if it is called sufficiently often 1 , because
the delay time PT is finite.
1 It is not defined in the standard or in the manual, but our
implementation works properly, if the elapsed time between two calls
is less than the maximal value of the TIME data type, which is about

Based on the definition of the simulation relation, safety
properties making use of the atomic elements – like condi-
tions on the used variables Q and in – that are preserved in
S are also preserved between abstract and realistic model.
However, the abstract model can impose false positives,
i.e. the given abstract counterexamples can never occur in
the in the real system.

5. ANALYSIS AND CONCLUSIONS

This paper proposes two different approaches for modelling
time and timers in PLC-based control systems. Experi-
mental results applied to a real PLC program developed
at CERN and an analysis of both approaches have been
presented. While the first approach provides a realistic
model of a PLC time and timers, the second provides an
abstract representation of them.

The first approach represents with high fidelity the TON
implementation on a real PLC. This TON representation
implies also to model time. The accuracy of the model is
high enough, using as unit of logic time 1 ms for timers
(as in a real PLC). In terms of specification, this approach
allows to express properties with explicit time by using
CTL and a monitor. However the resulting state space is
very big. Even if some abstraction techniques are applied
verification time can become very large and in some cases
it may not be handled by model checkers.

The second approach solves the problem of state space
explosion by proposing a simplified model of the first
approach. The resulting model has a non-deterministic
nature, so the accuracy is reduced and it can produce
false positives. In terms of specification, it is not possible
to verify properties with explicit time, but it can verify
properties that guarantee that the timer gives a response
(liveness property) although we can not verify when the
response will be given.

Table 5 summarizes the main differences of both ap-
proaches.

Table 5. Overview of the timer representation
approaches

Realistic Abstract

Size of PSS huge (e.g. 5.91 · 1015 moderate (e.g. 6
for the TON model) for the TON model)

Requirement rich requirements requirements
expressivity with explicit time, without explicit time,

CTL/LTL + monitors CTL/LTL is enough

Constraints time incremented by no explicit time,
PLC cycle time false positives

The first approach is thus needed when properties with
explicit time have to be verified but there is a higher
chance of having a state explosion problem. The second
approach is suitable for timed properties without explicit
time (for example certain before/after properties) and
for non-timed properties (for example safety or liveness
properties), where the variables linked to the property are
affected by a timer in the real system and this timer cannot
be eliminated by using abstraction techniques, such as

30 s represented on 16 bits or 24 days represented on 32 bits. Usually,
the timers are called in every PLC cycle, thus this is not a limitation.
This is also needed for the timers to work properly.

cone of influence. Although, false positive results can occur
using this approach, false negative can never occur.

Both approaches are supported by the suggested general
methodology for verifying PLC programs. A tool is also
provided for the automatic generation of formal models
for different verification tools.

Future plans comprise the integration of the tool and
methodology in the UNICOS development process. In
addition, extending and optimizing the abstraction tech-
niques and the proof of the transformation to guarantee
its correctness are ongoing work.

REFERENCES

Amnell, T. et al. (2001). UPPAAL – now, next, and fu-
ture. In Modeling and Verification of Parallel Processes.
Springer Berlin Heidelberg.

Basu, A. et al. (2011). Rigorous component-based system
design using the BIP framework. IEEE Sw., 28, 41–48.

Behrmann, G., David, A., and Larsen, K.G. (2004). A tu-
torial on UPPAAL. In SFM-RT 2004., Revised Lectures,
volume 3185 of LNCS, 200–237. Springer Verlag.

Blanco, E. et al. (2011). UNICOS evolution: CPC version
6. In 12th ICALEPCS.

Blech, J.O. and Grégoire, B. (2011). Certifying compilers
using higher-order theorem provers as certificate check-
ers. Formal Methods in System Design, 38(1), 33–61.

Cimatti, A. et al. (2002). NuSMV 2: An opensource tool
for symbolic model checking. In 14th CAV.

Clarke, E.M., Grumberg, O., and Peled, D.A. (1999).
Model Checking. The MIT Press.

Darvas, D., Fernández, B., and Blanco, E. (2013). Trans-
forming PLC programs into formal models for verifi-
cation purposes. Internal note, CERN. CERN-ACC-
NOTE-2013-0040.

Darvas, D., Fernández, B., Vörös, A., Bartha, T., Blanco,
E., and González, V.M. (2014). Formal verification of
complex properties on PLC programs. In Proc. of 34th
Conf. on Formal Techniques for Distributed Objects,
Components and Systems, LNCS. Springer. To appear.

IEC 61131 (2013). IEC 61131: Programming languages for
programmable logic controllers.

Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., Bensalem,
S., and Probst, D. (1995). Property preserving abstrac-
tions for the verification of concurrent systems. Formal
methods in system design, 6(1), 11–44.

Mader, A. and Wupper, H. (1999). Timed automaton
models for simple programmable logic controllers. In
11th Euromicro Conference on Real-Time Systems.

Mokadem, H.B., Brard, B., Gourcuff, V., et al. (2010).
Verification of a timed multitask system with UPPAAL.
IEEE Transactions on Computers Transactions on Au-
tomation Science and Engineering, 7, 921 – 932.

Perin, M. and Faure, J.M. (2013). Building meaningful
timed models of closed-loop DES for verification pur-
poses. Control Engineering Practice, In press.

Siemens (1998). Structured Control Language (SCL) for
S7-300/S7-400 Programming. Siemens.

Wang, R., Guan, Y., Liming, L., Li, X., and Zhang, J.
(2013). Component-based formal modeling of PLC
systems. Journal of Applied Mathematics, 2013.

