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Abstract. Programmable Logic Controllers (PLCs) are widely used in
the industry for various industrial automation tasks. Besides non-safety
applications, the usage of PL.Cs became accepted in safety-critical instal-
lations, where the cost of failure is high. In these cases the used hardware
is special (so-called fail-safe or safety PLCs), but also the software needs
special considerations. Formal verification is a method that can help to
develop high-quality software for critical tasks. However, such method
should be adapted to the special needs of the safety PLCs, that are often
particular compared to the normal PLC development domain. In this pa-
per we propose two complementary solutions for the formal verification
of safety-critical PLC programs based on model checking and equiva-
lence checking using formal specification. Furthermore, a case study is
presented, demonstrating our approach.

Keywords: PLC - model checking - formal specification - safety-critical
systems.

1 Introduction and Motivation

Programmable Logic Controllers (PLCs) are special industrial computers,
widely-used for various automation tasks. Although initially PLCs were not
specifically targeting safety-critical applications, it is feasible and increasingly
accepted to use these controllers in critical settings with some restrictions [9].
Most of the PLCs can be programmed in one of the languages defined by
the IEC 61131-3 standard: Instruction List (IL), Structured Text (ST), Ladder
Diagram (LD), Function Block Diagram (FBD) and Sequential Function Chart
(SFC). The first two languages are textual with different levels of abstraction: ST
is a high-level language, while IL is “assembly-like”. The last three languages
are graphical. As SFC is a special-purpose language for structuring the PLC
programs, this paper focuses on the first four languages. Short examples of these
four languages can be seen in Fig. [2l These example programs have the same
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meaning and behaviour, i.e. they provide the same output sequences for the same
input sequences.

Safety-Critical PLC-Based Systems. The safety-critical controllers have to fulfil
the requirements of the corresponding standards, such as IEC 61508, IEC 61511,
or IEC 62061. These standards define different safety integrity levels (SIL) and
various requirements and guidelines for the system and the development process.
Many PLC vendors produce a special range of hardware complying with the
corresponding standards. These so-called fail-safe PLC CPUs (or simply safety
PLCs in the following) are typically certified up to SIL3 according to IEC 61508-
2. Besides the special hardware, the PLC vendors provide special development
environments, often with additional restrictions compared to the non-safety-
critical PL.C programming. For instance, Siemensﬂ restricts the developer to use
the LD or FBD language with further restrictions, such as no floating-point or
compound data types can be used [I7], following the recommendations of the
IEC 61511-2 standard. Although the hardware of the safety PLCs is special, the
hardware differences do not affect the software part. Thus the main particularity
of the safety PLCs for us is the restricted programming possibilities, namely the
obligation to use restricted LD or FBD language for programming.

Typically, testing is applied to assess and improve the quality of PLC-based
applications. In safety-critical settings more precise verification is needed. Formal
verification is not widely used yet in the industry, presumably because of its high
cost and complexity. However, as the cost of failure is high in safety-critical PLC-
based systems, they are good candidates for formal verification. Fortunately,
formal verification becomes more and more accessible thanks to the new methods
that hide the difficulties from the developers.

The goal of this work is to apply formal verification (model checking and
equivalence checking) to safety-critical PLC programs in order to complement
the current verification methods, to increase the quality of the programs by find-
ing more faults. However, the goal is not (yet) to prove the correctness of the
PLC programs, therefore we will not focus directly on proving the correctness of
our methods in this paper. We extend the PLCverif approach [7], already pro-
viding a scalable and flexible model checking method adapted to PLC programs,
to make it suitable for the verification of safety-critical systems. This involves
three main tasks: (1) support for the specific languages used in safety PLCs,
(2) development of new reduction heuristics to cope with large safety programs,
and (3) introduction of a new verification approach based on complete behaviour
specification. Furthermore, we present a case study, where our method proved
to be applicable and useful.

1 As Siemens is widely-used at our organization, we are using it as an example PLC
provider. The languages used in Siemens PLCs are compliant with the IEC 61131
standard, but small syntactic and semantics differences exist. The Siemens variants
have different names: instead of 1L, ST, LD, FBD, SFC, they are called STL, SCL,
LAD, FBD, SFC/GRAPH, respectively. To avoid the confusion, we will use the
standard language names for the Siemens variants too, but when a detail is vendor-
specific, we will use the Siemens syntax or implementation.
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Fig. 1. SM18 Cryogenic Test Facility (©CERN, 2013. CERN-GE-1304099-24)

Case Study. CERN, the European Organization for Nuclear Research operates a
particle accelerator complex, comprising the Large Hadron Collider (LHC). The
high collision energy of the LHC necessitates a strong magnetic field to bend the
particle beams, achieved by superconducting magnets. These magnets should
be tested before putting them into production. For this, CERN has a unique
testing facility (so-called SM18 Cryogenic Test Facility) where the magnets can
be tested at low temperature (1.8 K, achieved by liquid helium and nitrogen),
high currents (14 kA) and vacuum. A photo of the SM18 test hall can be seen
in Fig. [I| (4 out of the total 10 test benches are shown in the photo, with a
white, shorter quadrupole and a blue, longer dipole magnet currently under
test). Testing the magnets is a safety-critical task, as a failure can cause serious
damage or injury. Therefore a safety instrumented system is in use to allow or
forbid the magnet tests based on whether their preconditions are met. Recently
a project started to re-engineer this safety system based on safety PLCs. In this
project we have applied formal methods from the beginning of the development.

Structure of the Paper. Section [2] introduces the original PLCverif verification
approach, that is not adapted yet to safety-critical PLC programs. Then Sec-
tion [3] defines two extensions, making the method applicable in safety-critical
settings. The validation and our experiences on the above-presented case study
are discussed in Section [4] Section [o| presents the related work on formal verifi-
cation of PLC programs. Section [6] summarizes and concludes the paper.

2 The Original PLCverif Approach

The PLCverif tooﬂ provides a scalable and flexible workflow for the model check-
ing of PLCs [7J5]. It has already proven to be useful for non-safety-critical pro-
grams, written in ST language [7]. However, as it does not support the FBD
and LD languages, PLCverif cannot be used as it is for the verification of our
safety-critical PLC programs.

2 http://cern.ch/plcverif/
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Fig. 3. Original verification workflow

Fig. 2. PLC language examples

The original workflow (see Fig.[3]) builds on two inputs: (1) the ST source code
(created by an engineer) and (2) the requirements formalized using pre-defined
requirement patterns. A requirement pattern is an English sentence containing
gaps to be filled by the user with simple expressions. The meaning of the sentence
is formalized using temporal logic, having the same placeholders.

First, the ST source code is parsed and translated to an internal, automata-
based intermediate model (IM). After, based on the given requirement and
generic PLC knowledge, the IM is reduced, preserving the properties to be
checked [6]. Then the “PLCverif model checking” step is performed: (a) the
reduced IM and the requirement are translated to one of the supported model
checker’s input format; next (b) the model checker tool is executed; and finally
(c) the output of the model checker tool is parsed, analysed and presented to the
user in a verification report. At the moment the concrete syntaxes of NuSMV,
nuXmv, UPPAAL, BIP and ITS tools are supported.

This method has three main advantages:

— Scalability. The automated reductions make the verification of large pro-
grams possible.

— Flexibility. The usage of IM allows to exchange the model checker tools.

— Usability. No special knowledge about formal verification is needed from
the user: the input of the PLCverif tool is an ST source code and a filled
requirement pattern, and the output is a self-contained verification report.

The PLCverif approach was found to be practical and applicable in real
cases [7]. However, to reuse this workflow for the safety-critical PLC programs
of CERN, three main extensions are needed.

— Support for new languages. The (Siemens) safety PLCs can only be
programmed in LD or FBD languages, therefore these languages should be
supported by PLCverif.
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Fig. 4. Extended verification workflows

— Sustain the scalability. The newly targeted languages are on a lower ab-
straction level than the ST language, therefore new, specialized reduction
heuristics are needed to cope with verification of the large PLC programs.

— Detailed behaviour checking. The original PLCverif approach is based
on requirement patterns, thus on temporal logic expressions. This is conve-
nient to express some state reachability problems or general safety require-
ments in a declarative way. However, it is difficult to cover all behaviours
with requirement patterns. Besides these requirements, checking the detailed
(step-by-step) behaviour is also important for the safety-critical applications.
Therefore a complementary method, built on behaviour equivalence checking
between the implementation and a formal specification, is more convenient
to capture the detailed behaviour of the implementation.

The details of these extensions are discussed in the next section.

3 Extended Approach for Programs of Safety PLCs

This section is dedicated to the extensions of the PLCverif workflow that are
necessary to use it for safety-critical PLC programs. Section discusses the
extensions required to handle the LD and FBD languages. Section [3.2] presents a
complementary workflow, built on formal specification and equivalence checking.

3.1 Verification of LD and FBD Programs

The primary need to verify safety-critical PLC programs is the ability to check
LD and FBD codes. However, in case of Siemens PLCs, the programs written in
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graphical languages are not directly accessible, but they can be exported from
the development environment as IL code. This solves the problem of parsing LD
and FBD languages. However, the abstraction level of IL is even lower than LD’s
or FBD’s, thus it is more difficult to handle IL programs. Our extended workflow
can be seen in Fig. [fa] where the new parts are denoted by bold letters.

Handling IL Code Inputs. The ST parser of PLCverif is based on Xtextﬂ pro-
viding rich tooling for the language defined by a grammar. However, IL cannot
be conveniently represented using Xtext. For example, in Siemens IL “A” may
be a variable and an AND logic instruction in the same program.

It is resource demanding to implement (1) a parser that can build the abstract
syntax tree of the IL language, and (2) a model translator that translates the
syntax tree to the intermediate model. Instead of developing these, we have
decided to represent IL code as ST code, providing a mapping in an inductive
way from each IL instruction to ST instructions. This way the PLCverif model
translator does not change, also the instruction-by-instruction mapping can be
much simpler than a complete parser in case of the IL language.

The challenge of this mapping is that the IL instructions directly access and
modify the different registersﬂ of the PLC. For example, the instruction “L vari1”
stores the contents of Accumulator 1 in Accumulator 2, then it loads the value
of variable varl to Accumulator 1. There is no language element to access the
registers directly in ST, making the direct representation of IL code impossible.
However, this can easily be solved for verification purposes. We emulate the
registers as local ST variables according to a well-defined naming convention,
and use it consistently in the ST programs and in the properties to be verified.
To avoid the confusion — though it does not require a language extension —, we
will use STr as language name for programs written in ST where the registers
are emulated as local variables. This solution is similar to the one presented in
[19]. To distinguish between ordinary variables and the ones representing STr
registers, the latter’s names start with double underscores.

With this extension, each IL instruction (e.g. bit logic and comparison opera-
tions, conversions, jumps, arithmetic instructions, load and transfer instructions)
can be represented in STr, by making all implicit effects of the IL instructions
explicit in STr. For this purpose, we have identified the semantics of each IL
instruction by checking on real PLCs what are the results of the instruction for
every possible initial state (i.e. for each valuations of the read registers and vari-
ables). The identified semantics of the IL instructions are generic, not specific to
our case studies. Some examples for this translation with different complexities
are in Table [1} A short description of the used registers is in Table m

3 https://www.eclipse.org/Xtext/

4 As previously discussed, we use the Siemens notations in this paper. Throughout this
paper registers are used as a generic term referring to the status bits, accumulators
and the nesting stack.

5 Here we omit the registers not necessary for simple IL programs, such as the BR
(binary result), OV (overflow), OS (stored overflow) bits and the address registers.
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Table 1. IL to STr transformation examples

IL STr equivalent

A wvarl IF __NFC THEN __RLO:=__RLO AND (wari OR __OR); ELSE __RLO:=warl OR __OR; END_IF;
__STA:=varl; __NFC:=TRUE;

A( __nsRLO[8]:=__nsRLO[7]; ... __nsRLO[2]:=__nsRLO[1]; __nsRLO[1]:=__RLO OR NOT __NFC;
__nsOR[8] := __nsOR[7]; ... __nsOR[2] := __nsOR[1]; __nsOR[1]:=__OR AND __NFC;
__nsFC2[8] :=__nsFC2[7]; ... __nsFC2[2]:=__nsFC2[1]; __nsFC2[1]:=FALSE;
__nsFC1[8]:=__nsFC1[7]; ... __nsFC1[2]:=__nsFC1[1]; __nsFC1[1]:=FALSE;
__nsFCO[8]:=__nsFCO[7]; ... __nsFCO[2]:=__nsFCO[1]; __nsFCO[1]:=FALSE;
__OR:=FALSE; __STA:=TRUE; __NFC:=FALSE;

>I __OR:=FALSE; __NFC:=TRUE;

__RLO:=(__ACCU1<__ACCU2); __CCO:=(__ACCU1>__ACCU2); __CC1l:=(__ACCU1<__ACCU2);

L wvarl __ACCU2 := __ACCU1; __ACCU1l := warl;

Table 2. Main registers in Siemens PLCs [16]

Register Purpose

_RLO Result of last logic operation.

_OR Helper bit for the “and before or” logical operation (0 instruction).

_NFC Not first computation. If it is false, the current value of __RLO is not
taken into account.

__STA Status bit. Stores the value of a bit that is referenced.

__CCO, __CC1 |Condition codes. The result of the last comparison or other operations.
__ACCU* Accumulators.

_ns*[] Nesting stack. Temporarily stores register values (--nsRL0O, _nsOR) and
the last Boolean operation (_.nsFC#) while a nested Boolean computa-
tion is in progress.

As each IL instruction can be translated into STr, it can be seen inductively
that each IL program can be translated into STr as well. In other words, STr
can emulate all IL programs, and consequently all FBD and LD programs too.
Furthermore, STr can be regarded as a textual concrete syntax of the PLCverif
intermediate model (IM), therefore there is no theoretical difference if we trans-
late IL programs to the intermediate model directly or through STr.

Code Size Blow-Up and Reductions. Representing the registers as local variables
allows the inductive mapping of IL programs to the ST language, making possible
to reuse the PLCverif workflow and toolchain. However, it raises a new concern:
a single IL instruction may read and modify several registers. This causes a sig-
nificant blow-up, as illustrated in Fig. [l The original sample IL code contains
4 instructions (Fig. , that can be represented by one single statement in ST
(Fig. [5b)). However, the IL code translated to STr have 14 variable assignments
(Fig. . Note that these assignments represent the storage of (intermediate)
results that are not necessarily needed by the subsequent statements. The ex-
tremities of this are the nesting Boolean operators (e.g. “A(”). They store some
intermediate computation results in the so-called nesting stack, therefore a single
IL operation might be translated to 40-50 STr assignments (see Table .



8 D. Darvas et al.

1 La 1| __ACCU2 := __ACCU1; __ACCUL := a;
2 Lb 2
3| >=I 3| __ACCU2 := __ACCU1; __ACCU1 := b;
4 =r 4
5| __OR := FALSE; __NFC := TRUE;
6| __RLO := (__ACCUL <= __ACCU2);
(a? Source IL code 7| __CCO := (_L_ACCUL > __ACCU2);
(Siemens) 8| __CC1 := (__ACCUL < __ACCU2);
9
10| IF __MCR THEN r := __RLO; END_IF;
1‘ r = (a>=b); 11| __OR := FALSE; __STA := r; __NFC := FALSE;
(b) Equivalent ST code (c) Generated STr code

Fig. 5. Illustration of code blow-up caused by IL to STr translation

This blow-up effect can be reduced by developing new automated reduction
heuristics, similarly to the ones already included in the PLCverif workflow [G].
The new reductions are similar to the reductions used in optimized compilers.

— FEaxpression propagation can help to reduce the number of assignments. For
example, the second assignment of line 1 in Fig. can be removed and
the first assignment of line 3 can be replaced by __ACCU2 := a; without
modifying the behaviour of the program.

— The assignments without observable effect can be removed. For example, the
first assignment of line 1 in Fig. |pc| can be removed, as its effect is hidden
by the first assignment of line 3.

— The non-used variables are deleted by the already existing cone of influence
reduction. For example, the __CCO and __CC1 variables can be removed, as
they are never read in Fig.

— The expression propagation can result in complex Boolean expressions, that
can be reduced by Boolean factoring and other Boolean expression reduction
methods. If the simplified expression refers to fewer variables, these reduc-
tions may help the cone of influence reduction. Nevertheless, even if they do
not reduce the state space, the Boolean expression simplification makes the
other reductions faster and decreases the memory needs.

By using these reduction heuristics, the code in Fig. [bc|can be automatically
reduced to the one in Fig. [fb] when the registers are not read by any further
part of the code. Note that each reduction is applied only if it preserves the
properties that are currently under evaluation.

3.2 Verification Based on Formal Specification

The previous approach reused the original pattern-based requirement specifi-
cation method. This is a suitable way to check state reachability properties
expressed by the developer. However, the verification of the detailed behaviour
is similarly important in safety-critical systems, for which the original approach
is not convenient. Furthermore, there is no guarantee that the verification based
on manually extracted requirements covers all important aspects of the code. In
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extreme cases the verification of these requirements can have an opposite effect:
the developer convinces himself based on incomplete requirements that the im-
plementation is correct. Later this might bias the testing process. To avoid this,
we provide a complementary verification approach which is more convenient for
detailed behaviour verification.

The specification of PLC programs is an important topic, yet there are no
widely used behaviour specification methods, especially not formal methods with
precise semantics definition. Providing a detailed specification is often too “ex-
pensive”, and instead of precisely specifying the behaviour, documents written
in natural language and informal control tables are used that are easy to mis-
understand and difficult to verify. However, as the cost of failure is high in the
safety-critical domain, also the behaviour of a safety PLC program is typically
simpler. Therefore providing a formal specification may be feasible in these cases.

Previously we have proposed a method called PLCspecif [4] for the formal
specification for PLC programs. Its aim is to provide a formal, yet convenient way
for the PLC developers to describe a detailed, complete behaviour specification
of the module or system under development. PLCspecif plugs together different,
already used semi-formal description methods, e.g. state machines, data-flow
diagrams, truth tables; and assigns a unified formal semantics to them. This helps
the development and the verification by providing unambiguous requirements.
The semantics of PLCspecif is designed in a way that the specifications can be
easily transformed to automaton-based models for formal verification.

If such specification exists for the safety-critical PLC program, we can benefit
from it and check directly the equivalence between the implementation and the
specification. This workflow is shown in Fig. The semantics of PLCspecif is
given as an automaton construction, that can be directly represented in the IM
formalism of PLCverif. Accordingly, two IMs are used in this approach: one to
represent the implementation, and another one representing the specification.
First, both IMs are reduced independently. In this phase we only use reduction
rules that preserve all properties, assuming that they check variable values only
at the end of the PLC cycles. Then the two IMs are automatically combined into
a composite verification model. This composite verification model is constructed
on the basis of the definition of the behavioural equivalence. As the equivalence
relation we would like to check requires that for each possible input sequence,
the specification and the implementation give the same output sequences, the
composite verification model ensures by construction that the two model parts
always get the same input values. After, the composite model is reduced again.
Then, similarly to the original PLCverif approach, we use one of the supported
external model checkers to decide whether the equivalence relation holds, namely,
that the corresponding outputs of the two model parts are equal in each step.

4 Validation and Analysis of Applicability

To demonstrate and validate the presented approaches, we recall the SM18 Cryo-
genic Test Facility’s safety controller. The implementation under test in this case
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245 p — Implementation = ;
e aset STr statements: 123 329 ?Emi.
requiremen AV 582 specification
24% Ci‘L Unreduced model (IM) Unreduced model (IM)
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\ /

24x

Reduced model (IM)
PSS: 108..10%4, #V: 9..90

Reduced composite model
PSS: 1011, #V: 108
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Pattern-based approach

SV: 366 bits, #Loc: 29

Specification-based approach

total run time for 1 req.: 5..186 s* total run time: 538 s

total run time for all 24 regs.: 43 min
*These metrics are requirement-dependent.

Fig. 6. Key metrics of the example

is the safety logic of this controller, isolated from the rest of the program that is
responsible for the non-safety-critical tasks. The IL code exported from the orig-
inal LD implementation contains about 9500 instructions. This was translated
into approx. 120000 STr statements, already with some optimizations (e.g. the
nesting stack depth was reduced to the necessary amount). The potential state
space (i.e. the cross-product of all contained variable’s domain and the possible
automata locations in the IM) contains approx. 1097® states.

We have applied both previously described formal verification approaches:
first the pattern-based, then the specification-based approach. The key metrics
and the summary of the two methods can be seen in Fig. [f] For each IM we give
the size of potential state space (PSS), the number of variables (#V), the size of
the state vector, i.e. the length of binary vector that can represent the current
values of all variables (SV), and the number of automata locations (#Loc).

Verification Based on Requirement Patterns. After the successful representation
of the safety logic in STr language, we have captured pattern-based require-
ments from the informal specification provided by the client of the project. As
this was the first safety-critical PLC program verification project at CERN, the
requirements were extracted by formal methods experts, rather than the PLC
program developers. In total 24 different requirements were extracted and for-
malised using requirement patterns. Some of them are fairly simple, while some
others contain references to up to 50 different variables.

In each case the verification was successfully executed, thanks to the
requirement-specific and general reductions that reduced both the number of
variables and automaton locations. Also, the reductions were able to eliminate
all register-representing variables in every case. The typical verification run time
of each requirement was 150-170 s, including the model generation, the model re-
ductions and the execution of the external model checker (nuXmv in this case)ﬂ

6 For all measurements we have used PLCverif 2.0.2 and nuXmv 1.0.1 on Windows 7
x64, executed on a PC with Intel® Core™ i7-3770 3.4 GHz CPU and 8 GB RAM.
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In case of some requirements, only a small part of the model was enough for
the verification of the given requirement, therefore the reductions were able to
eliminate a large part of the IM, resulting a total run time of 4-5 s. The total run
time of all verification cases together was 43 minutes. The peak memory con-
sumption of PLCverif was 2926 MB, however as the implementation is in Java,
this number is an upper estimation of the required memory. The peak memory
consumption of nuXmv was 570 MB. In these cases the reductions performed
the significant part of the verification, the external model checker was easily able
to cope with the reduced model. Even the longest nuXmv execution time was
shorter than 30 s, and in many cases it was less than a second. However, without
our reductions the model checking could not be possible at all.

As the total run time, as well as the computation resource requirements are
significant, an automated solution was built using Jenkin&ﬂ that automatically
executes the verification of all requirements on any code or requirement modifica-
tion in the version control system. The execution takes place on remote servers,
this is completely transparent for the user. When the verification is completed,
the responsible people are notified by e-mail about the results of the verification.

Verification Based on Formal Specification. To validate the second approach, the
formal specification of the magnet test safety logic had to be captured. We did
not have a formal specification a priori, the implementation was developed based
on a semi-formal specification. As the precise semantics of the client’s specifica-
tion was already clarified during the previous verification process, the creation
of the formal specification was relatively simple. Note that PLCspecif provides
various tabular description methods, similar to the one used by the customer of
the project. As previously discussed, first the PLCspecif specification was au-
tomatically translated to intermediate model. Even before reductions, this IM
generated from the specification was much smaller than the IM generated from
the STr code, as the model size blow-up caused by the explicit representation
of PLC registers does not occur in this case. After the reductions, the compos-
ite verification model was constructed and reduced. The resulting verification
model was larger than the biggest individual verification model generated using
the pattern-based approach. Consequently the total run time was longer, ap-
proximately 10 minutes. However, this had to be done only once, while the first
approach necessitated 24 verification runs, one for each requirement. Therefore
in total the run time of the second approach was more than four times shorter.

Analysis of the Results. After performing the case study we have concluded that
the verification was successful, as it was possible to model and verify the critical
part of the PLC program. We have applied an iterative workflow: every time
the model checking pointed out a problem, we have suspended the verification
process until the root cause of the problem was fixed. Then the verification
process restarted with the new code version. In total 14 issues were identified.
We have classified the problems found into the following main categories:

" https://jenkins-ci.org/
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4 requirement misunderstanding problems. In these cases the formalization
of the requirements pointed out ambiguous or contradictory elements in the
specification provided by the customer, overlooked during implementation.
— 3 functionality problems. In these cases the problem could have caused un-
expected behaviours, but not dangerous situations.

— 5 safety problems. In these cases the problem could have caused dangerous
situations, i.e. a magnet test might be permitted when it should not.

2 mized functionality-safety problems.

All these problems were found before on-site testing of the PLC program.
As the (re-)deployment and the PLC’s on-site testing is a time-consuming op-
eration, model checking provided an efficient verification method. Furthermore,
model checking does not involve the use of real hardware, therefore no dangerous
situations can happen contrarily to on-site testing.

As testing in lab and on site provides the state-of-the-practice in the verifi-
cation of PLC-based systems, we have checked whether the problems identified
using formal methods could have been found using the typically applied testing
methods. Setting up a test scenario on-site can take up to hours, therefore only
the main functionalities and their most critical errors are targeted, potentially
omitting problems. Out of the 10 functionality or safety issues, 4 could have been
found using testing. In 6 cases it was practically impossible to find the problem
using our regular testing approach, as the testing is not exhaustive in practice.

We have performed the pattern-based verification approach first, which iden-
tified 12 of the 14 issues. The remaining 2 problems were found using the
specification- and equivalence checking-based approach. This shows that the two
methods are convenient for different types of requirements, and they can com-
plement each other. The system is now in production for 7 months. So far no
major problem was observed in operation caused by mistakes in the safety logic.

Comparison of the Two Approaches. The two presented verification approaches
(pattern-based and behaviour specification-based approaches) provide different
advantages and disadvantages.

— Using the behaviour specification-based approach, all requirements contained
in the original specification are covered, there is no potential user omission
in extracting the requirements.

— The pattern-based approach can check properties in a more “declarative”
way, i.e. without specifying the complete behaviour and may help the user to
find discrepancies between the general expectations and the implementation,
or various requirement misunderstandings.

— The verification models generated in the pattern-based approach are often
smaller than in the other approach, providing better verification perfor-
mance. On the other hand, this approach involves multiple verification runs,
whereas the specification-based approach needs only one model generation
and one model checker execution.

— The integration to the existing development processes is easier in case of the
pattern-based approach, as there is no need for a complete formal specifica-
tion, which does not exist typically and often difficult to be constructed.
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5 Related Work

The formal verification, especially model checking of PLC programs was deeply
studied in the last fifteen years [I3]. Several approaches were developed with
different advantages and capabilities. We summarize the works most relevant
to us in Table [3| To investigate the applicability of the methods, we have four
main factors to take into account: the set of supported languages, the real-
life applicability (how feasible it is to include the method in the normal PLC
development workflow), the scalability of the method and whether a supporting
tool was developed. It should be noted that the tools are typically not publicly
available, except for [2].

For checking applicability, we used the PLCverif approach [7] as a base of
comparison. This comparison contains subjective elements, but we claim that
PLCverif provides a better real-life applicability than the other methods, as
the formal verification-related difficulties are hidden from the user, there is no
need to edit directly temporal logic expressions or to invoke model checker tools.
The scalability is a similarly important question. We have tried to judge the
scalability of each method based on the cited papers. If it was not possible (e.g.
there was no presented verification example), we put “?” in the table. We have
also included the used verifier tools in the table. It can be seen that [7] was
the only approach we have found that provides a generic approach relying on
multiple model checkers, depending on the current verification needs.

Since [7] does not provide support for the FBD and LD languages necessary
to verify programs of safety PLCs, we decided to extend this method and to
benefit from its advantages in the other dimensions.

[19] is a particularly interesting related work. Their approach is similar to
ours: they translate the IL code instruction by instruction into a pivot language,
that is SystemC in their case. The verification is performed as an equivalence
checking between the SystemC representation of the implementation and the
specification. However, the scalability of this method is not justified. Further-
more, the SystemC specification cannot be used directly in our PLC development
workflow due to the lack of specific knowledge.

Equivalence checking was already used in different verification settings for
PLC programs: [I] applies regression verification between two versions of the
implementation. In our work we apply equivalence checking between the formal
behaviour specification and the implementation.

6 Summary and Conclusion

In this paper we presented an extension to the PLCverif approach [7] to handle
the PLC programs written in FBD, LD or IL language that is necessary to verify
safety-critical PLC programs. As [7] already contains methods to handle the ST
and SFC languages, the current paper justifies also the claim that PLCverif can
be a generic approach handling all five common PLC languages. To cope with
the safety-related languages, additional reduction heuristics were introduced.
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Table 3. Related work

Real-life
Ref. Lang. applicability Scalability Tool Verifier tool
2] 1L, ST oo .o +  Arcade
Bl IL . . — CaSMV
8 ST, ... oo oo — NuSMV
[2010] FBD oo Y +  CaSMV
i1 1L oo oo — 73
[12] SFC oo oo +  SpaceEx
[I4] FBD oo .o —  NuSMV
[I5] LD . ? — UPPAAL
[I8] FBD . ? —  UPPAAL
[9] IL . . —  MiniSat
[7] ST, SFC Y PYYS + nuXmv, UPPAAL, ...
Legend eee: high, ee: medium, e: low; +: exists, —: does not exist

Besides the requirement pattern and model checking-based verification approach,
a new approach was drawn up, based on a PLCspecif formal specification and
equivalence checking. These two approaches can complement each other.

A case study was presented showing that formal verification can be applied
to significantly large, real safety-critical PLC programs. The two formal verifica-
tion techniques identified several problems and they complemented each other.
Many of the problems identified using them could have not been found using the
currently used testing techniques. Moreover, the presented approaches helped to
identify problems with the requirements, such as ambiguity or contradictions,
overlooked by the developers during implementation. Formal verification was ap-
plied in the design phase, thus fixing the problems was easier than if they would
have been found during on-site testing or in production. Furthermore, model
checking and behavioural equivalence checking provided a safe way to check
requirements, without any safety risks that might arise during on-site testing.

Acknowledgement. The authors would like to thank the people involved in the
presented re-engineering project for their support and cooperation. Special thanks to
Roberto Speroni for the cooperation and the continuous feedback.
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